FIJI RENEWABLE ENERGY INVESTMENT PLAN (REI IP)

For submission to Climate Investment Funds (CIF)

Presentation Outline

I. Overview of Fiji's Energy Sector

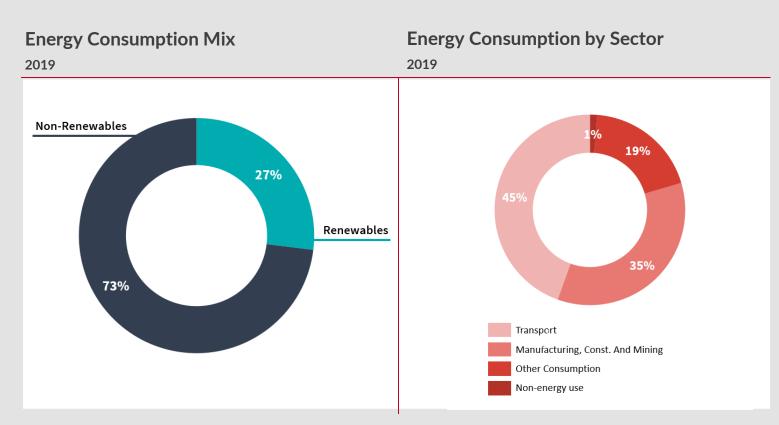
II. Key Policies and Strategies

III. Energy Sector Challenges

IV. Prioritization of Projects

V. Program Description

VI. Activities Empowering Women and Vulnerable Groups

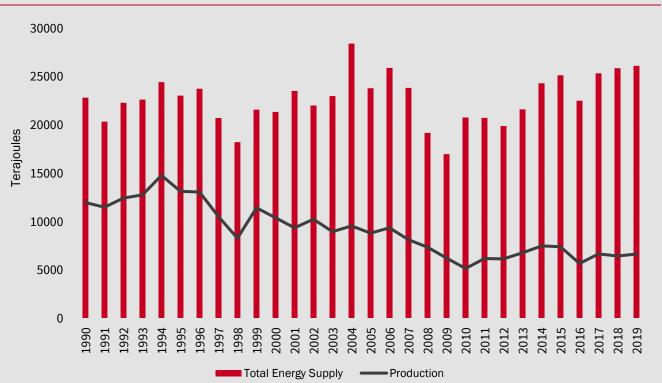

VII. Financing Plan and Instruments

VIII. Policy Reform and Technical Assistance Needs

OVERVIEW OF ENERGY SECTOR

Energy Consumption Mix

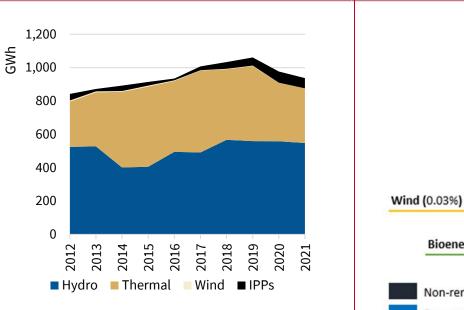
- Over two-thirds of Fiji's energy comes from imported oil products, primarily used for transportation and manufacturing
- Oil is also used in thermal power plants (TPPs) and home diesel generators
- Biofuels are primarily used in manufacturing but also in bioenergy power plants and for cooking among rural households
- Renewable energy sources contribute to more than 50% of electricity generation, they only make up 27% of total energy consumption
- EFL is responsible for generating more than 93% of Fiji's electricity, while IPPs supply the rest

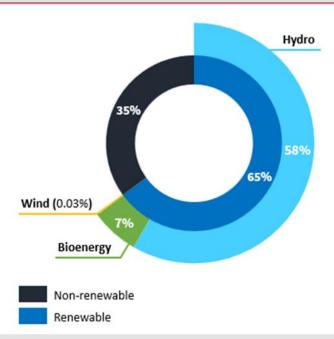


The Role of Imported Energy

- Imported oil is crucial for Fiji's economy, representing 18.3% of all imports in 2020
- This dependence is a result of Fiji's absence of oil reserves, its transportation sector's exclusive use of petrol, and the fact that 35% of electricity generation is still reliant on TPPs
- The continuous reliance on thermal generation coupled with steady economic growth over the last decade, has resulted in a sustained dependence on foreign energy

Dependence on Imported Energy


Domestic Production v. Total Supply 1990 - 2019


Electricity Generation

- Over 90% of electricity generation in Fiji is provided by EFL
- Historically, renewable energy sources have been the primary source of electricity, despite minimal growth in hydro generation since 2012
- As of 2020, hydro accounted for 58% of total electricity generation, and bioenergy accounted for another 6.5%
- Solar (1%) and wind (0.03%) account for minimal amounts of electricity generation
- The share of thermal power in EFL's electricity matrix **peaked** at **52%** in **2015** and has since experienced a gradual decline, reaching **35%** in 2020/2021

Electricity Generation by Source (Grid-Connected Only) 2012-2021

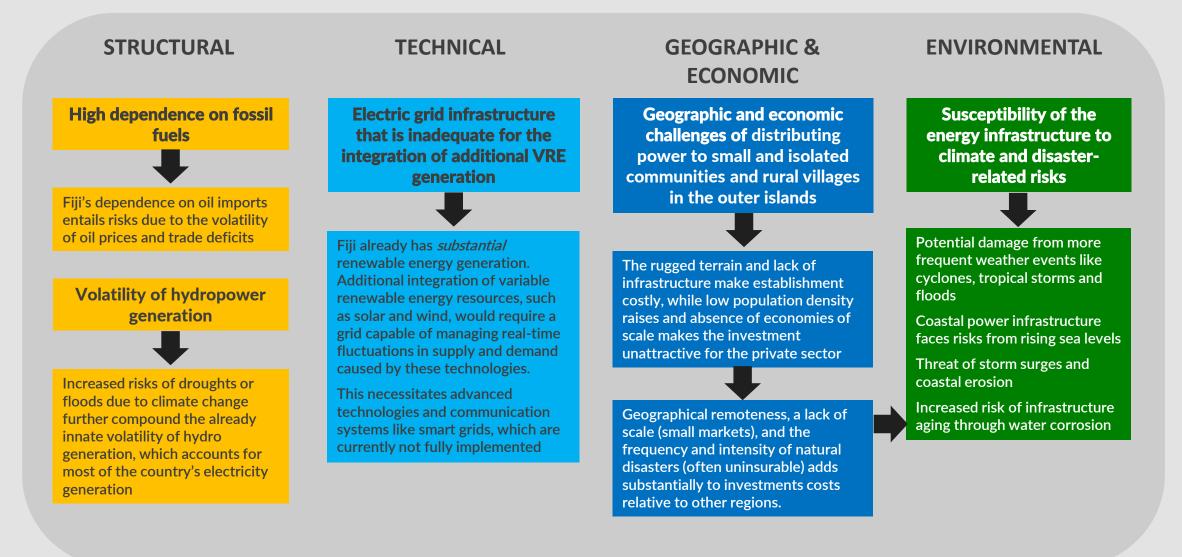
Electricity Generation Mix 2020

KEY POLICIES AND STRATEGIES

Key Energy and Climate Policies

Policy	Description			
National Energy Policy (2023-2030)	 Fiji's main policy for the development of the energy sector Informed by six principles: affordability; competitive neutrality; energy access for all; gender equity, equality, and empowerment; just transition; and renewable energy and sustainability Promotes the scaling up of renewable energy to reduce the country's dependence on imported oil while improving energy security and affordability 			
National Climate Change Policy (2018-2030)	 Central policy instrument to protect Fiji's development priorities from current, future, and intergeneration climate change risks Seeks to address the specific climate vulnerabilities faced by Fiji and the Fijian people through evidence-based policy on climate change, greenhouse gas emissions mitigation, risk reduction, and environmental protection. 			
Fiji Low Emission Development Strategy (LEDS) (2018-2050)	 Lays out four pathways for Fiji to achieve net zero carbon emissions by 2050 across all sectors of its economy, mainly through greenhouse gas (GHG) emission reductions Includes a commitment to a 40 percent reduction in transport sector emissions by 2030. 			
SDG7 Roadmap for Fiji	 Provides a roadmap with technological options and policy recommendations to assist the GoF in achieving the SDG7 targets 			
National Adaptation Plan (2018)	 Aims to enhance resilience against climate change and climate variability Offers an all-inclusive evaluation of the impact of climate change on key sectors Establishes a long-term strategy for improving resilience in the energy sector, supported by a climate risk model 			
Maritime and Land Transport Policy (2015)	 Guidelines set in policy include review of government subsidies for transport; promoting the use of fuel- efficient vehicles; attracting investors; reducing fossil fuel consumption; and encouraging alternative fuels 			

Other Relevant Strategies


Strategy	Description					
Fiji's National Development Plan (2017-2036)	 Aims to achieve 100% renewable electricity generation by 2036 Emphasizes development of a variety of RE sources Outlines plan for further grid extensions in Viti Levu, Vanua Levu, Ovalau, and Taveuni Includes plans for rural electrification and decentralized RE sources (solar, mini hydro, hybrid biofuel/diesel operated generators and wind systems) for the rural and outer islands where grid connections are not feasible 					
Fiji's National Infrastructure Investment Plan (NIIP)	 Serves as a strategic guide for screening and prioritizing infrastructure investments over the next 5-10 yer Foresees investments of FJD 13.5 billion (US\$ 5.9 billion) over the next 10 years Encompasses a wide array of infrastructure investments (over 570 potential projects), focusing on carconstruction projects and programs with a value exceeding \$100,000 Result of a comprehensive assessment of infrastructure needs across all sectors, drawing from the objectives and sectoral plans Employs a systematic and transparent process to prioritize investments across sectors, considering econviability and the government's funding capacity 					
EFL's Power Development Plan (2018-2028)	 Includes projects in the NIIP as well as additional capital expenditure foreseen by EFL PDP estimates a total investment of FJD 1.97 billion (US \$900 million) needed for the development and commission of renewable energy projects over the next 10 years Projects include strengthening the distribution network, expanding electricity access in urban and rural areas, acquiring new electricity meters and vehicles, and various other power infrastructure improvements/upgrades 					

NDC Commitments

Reduce 30% of business as usual (BAU) CO2 emissions (ref. year 2013) from the energy sector by 2030	Adopt Climate Smart Agriculture practices in crop management, livestock, sugarcane farming, and fisheries	Implement the 'Guidelines for climate-resilient and environmentally sustainable health care facilities in Fiji'
Reach as close to 100% renewable energy power generation (grid-connected only) by 2030	Enhance resilience by upgrading, repairing, and relocating existing critical public infrastructure	Conserve natural environment and biodiversity wealth enabling sustainable long-term provision of ecosystem services
Energy efficiency improvements economy-wide, implicitly in the transport, industry, and electricity demand-side subsectors	Develop early warning and monitoring systems, and nature-based solutions to mitigate the impact of flooding and cyclones	Plant 30 million trees by 2035
Reduce domestic maritime shipping emissions by 40%	Relocate highly vulnerable communities, and implement the concept of 'build back better'	Establish 30% of Fiji's Exclusive Economic Zones (EEZ) as Marine Protected Areas and work toward 100% management of EEZ by 2030

ENERGY SECTOR CHALLENGES

Energy Sector Key Challenges

PRIORITIZATION OF PROJECTS

Approach to Ranking Possible Projects

Projects from the NIIP, NDC Implementation Roadmap and EFL's PDP were grouped into categories of investments that CIF had indicated were eligible for REI funding, as shown below

Opportunity	Possible CIF Engagement through REIIP	REIP Activity Category		
T&D for RE Projects	 Grid interconnection to integrate regional markets and increase their flexibility. New and smart grids to enable new ways to manage VRE generation. 	Enhancing infrastructure to be renewable energy-ready		
Energy Storage & Grid Management Technologies	 All types of storage technologies, such as batteries, pumped hydro, and green hydrogen, which can back up the variability of renewables. New technologies for real-time grid management, such as advanced metering systems, wireless network control, and demand side management. 	Scaling up renewable energy- enabling technologies		
Electrification of Land Transport Sector	Introduction of EVs, and electric vehicle charging infrastructure.	Scaling up renewable energy- enabling technologies		
Electrification of Maritime Transport Sector	 Any technology that would help make Fiji's maritime transport sector low carbon. 	Scaling up renewable energy- enabling technologies		
Rural Electrification	 Support for re-charging stations or grid upgrades needed to shift from diesel- only to hybrid systems in rural communities. Financing of connection and other grid infrastructure costs of rooftop solar connections in rural communities. 	Enhancing infrastructure to be renewable energy-ready		

Ranking Criteria

Categories of projects were ranked against 12 simplified criteria, based on CIF REI's original criteria

REI IP Criteria	Simplified Criteria		
Relevance	Relevance		
Scale	Scale		
Speed	Speed		
Systemic change	Systemic change		
Adaptive sustainability	Resilience		
Potential for GHG emissions reduction/avoidance	Emissions reduction		
Potential to contribute to just transition	Protection of vulnerable		
Value for money	Financial and economic benefits (CBA)		
Mobilization potential	Potential for leverage		
Implementation potential	Implementation potential (readiness)		
Gender equality	Gender equality and social inclusion impact		
Development impact potential (SDGs)			
Development impact potential (co-benefits)	Development impact		

Ranking Outcome

• Based on a scoring exercise, it was decided that the focus of Fiji's REI IP should be on:

(i) Transmission & Distribution Investments for RE Projects, accompanied by any necessary investments in energy storage & grid management technologies; and

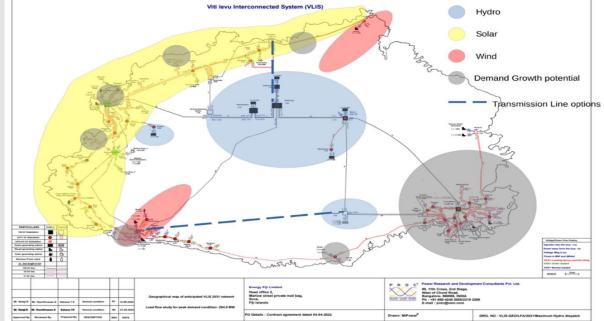
(ii) Rural Electrification

• Energy Storage & Grid Management Technologies also ranked well and will inevitably be an important part of the investments financed under the REI IP, but additional studies (as part of project preparation) are necessary to determine specifically which types of investments are needed accompany the T&D investments.

REI Technology	Score	Ranking	
T&D for RE Projects	54	1	
Energy Storage & Grid Management Technologies	45	3	
Electrification of Land Transport Sector	33	4	
Electrification of Maritime Transport Sector	29	5	
Rural Electrification	46	2	

These projects best meet the CIF criteria. There is substantial potential for overlap between the first and second categories.

Energy storage & grid management technologies will also inevitably be part of the T&D investments required to bring VRE generation online.


PROGRAM DESCRIPTION

Projects in Fiji that best meet CIF Criteria

Project Concept 1: A "Green Energy Circuit" for Viti Levu

Overview

- Investment in 132 kV transmission lines and grid management and storage to facilitate uptake of VRE generation
- Assistance on sector reforms and procurement RE IPPs
- Investment in climate resilience of the transmission network through managerial, operational, and structural measures
- Financing
 - US\$25 million in concessional CIF loans for transmission, grid storage and grid management
 - US\$8 million in CIF guarantees for RE IPPs to de-risk the "Pacific Premium"
 - US\$2 million in project preparation grants from CIF
 - US\$60 million in sovereign and non-sovereign financing from ADB; some of this could be used to debt finance IPPs
 - US\$35 million from private sector for RE IPPs (approximately 40 MW); \$15 million from IFC
 - US\$10 million (estimated) as counterpart contributions from EFL or GoF to cover taxes, duties, and overhead costs

- Associated activities (also refer to Appendix of this presentation)
 - Support on technical studies required for VRE uptake
 - Support on sector reforms
 - Support preparing tenders for RE IPPs
 - Support for the promotion of activities empowering women and vulnerable groups

Project Concept 2: Outer Islands Electrification

Overview

•

- Investment in extension of transmission lines on outer islands
- Several projects included in NIIP
- Facilitates delivery of solar (instead of diesel)
- Improve supply reliability for those with intermittent supply
- Financing
 - US\$35 million in CIF loans blended with US\$15 million in World Bank financing
- Associated activities
 - Consultations with local communities to assess project impact and mitigation measures
 - Assessment of institutional, policy and regulatory framework to support electrification schemes
 - Preliminary feasibility studies to inform project design, economic and financial feasibility, and implementation arrangements
 - Support for the promotion of activities empowering women and vulnerable groups

Possible Sites

Nawi Matei niba Somosomo Tavuki Taveuni Island Lavena Kanacea Salialevu Navakawau

ACTIVITIES EMPOWERING WOMEN AND VULNERABLE GROUPS

Activities Empowering Women and Vulnerable Groups

3

In order to ensure that women and other vulnerable groups equally benefit from economic opportunities generated by the project, several activities will be considered prior and during the implementation of the proposed program

These activities contemplate both project concepts 1 and 2 and include the following potential interventions Establishing gender working group with key stakeholders to oversee development of a Gender Action Plan

Support for increased female representation in renewable energy decision making through quotas

Supporting female and vulnerable group participation during the consultation and decision-making process

Introduction of gender and social inclusion criteria into bidding documents for subcontractor companies Targeted trainings on STEM and measures to attract and retain female talent (scholarships, bursaries, etc.)

5

Vocational training for women and vulnerable groups to empower them to become solar engineers

Training for women and vulnerable groups interested in operation and maintenance of solar equipment

8 Training for women and vulnerable groups interested in other income generating opportunities associated with the project

FINANCING PLAN

Financing Plan

Financing Source	CIF			Others					
Program	CIF Financing	CIF Guarantee	Project Preparation (Grant)	<u>Total</u> <u>CIF</u>	ADB ^[1]	World Bank	IFC	Private Sector ^[2]	Total
	(US\$ Million)								
Viti Levu Green Circuit	25	8	2	35	60		15	35	145
Electrification of Outer Islands	33		2	35		15			50
Total	58	8	4	70	60	15	15	35	195

[1] ADB funding comprises sovereign funding and non-sovereign funding for generation and transmission related investments in Viti Levu.

[2] Note that the estimates of private sector investment are extremely conservative and excludes the FJD1.12 billion investment (US\$ 500 million) EFL intends to invest in transmission & distribution. With these investments, the leverage ratio would be 8.9. Also excluded are the FJD 2.97 billion (US\$1.31 billion) foreseen in hydropower generation. With these investments, the leverage ratio would be 27.6. Finally, the estimates also exclude indirect downstream investments (e.g., in electric transport) likely to be made once the grid is upgraded.

POLICY REFORM AND TECHNICAL ASSISTANCE NEEDS

Technical Studies and Legal & Regulatory Reforms

Technical Studies

Technical studies will be carried out to identify options for augmenting the current 132 kV transmission grid to secure connections from RE sources to load centers on Viti Levu. Examples of potential studies are provided below.

Reliability and risk assessment tools for generation resource adequacy

Generation and transmission expansion tools

Generation dispatch and network operation tools

3

Legal and Regulatory Reforms

The Government of Fiji is committed to the substantial legal and regulatory reforms required to bring more renewable energy into electricity generation. Examples of proposed reforms are provided below.

Introduction of competitive auctions and possibly mandates for the purchase of RE

Expansion of the use of net metering and/or net billing to spur investment in rooftop solar

Legal recognition of storage as a distinct activity and regulatory reforms to promote investment in storage

APPENDIX: TECHNICAL STUDIES NEEDED AS PART OF PROJECT PREPARATION

Key Technical Studies for Component 1 (1/2)

2

1 Reliability and risk assessment tools for generation resource adequacy

In order to guarantee that resource adequacy models are capable of offering accurate risk assessments, Fiji should undertake probabilistic modeling that simulates random variables in a weatherdependent manner, compares simulations with historical data for benchmarking, models generator outages as being influenced by weather conditions, adjusts simulations to align with future expectations, and incorporate the impacts of climate change into the simulations Generation and transmission expansion tools

Grid interconnection and integration tools to facilitate connection of RE projects to grid Energy storage sizing and optimization software to assess and optimize the size and operation of energy storage systems, including batteries

Energy storage sizing and optimization software to assess and optimize the size and operation of energy storage systems, including batteries Generation expansion tools to consider the impact of new generation projects on the transmission infrastructure, including the need for transmission upgrades

Power flow analysis tools to evaluate the steady-state performance of the transmission grid under different operating conditions and generation scenarios

Key Technical Studies for Component 1 (2/2)

Generation dispatch and network operation tools

Energy Management Systems (EMS) software is the core tool for generation dispatch, providing real-time monitoring, control, and optimization of power generation and transmission

3

Renewable Integration Models to assess integration of VRE sources into the grid

Demand Response Management Systems to manage demand response programs and optimize load flexibility

Dynamic security assessment to identify critical contingencies in the grid by analyzing their corresponding dynamic security constraint violations on the grid State Estimation

Load Forecasting

Renewable Energy Generation Forecasting

Grid Frequency Control Tools for monitoring and controlling grid frequency, including frequency measurement, load shedding, and Automated Generation Control (AGC) functions

Voltage and Reactive Power Control Tools for managing voltage and reactive power in the grid, critical for renewable energy integration **Optimal Generation Scheduling Algorithm**

EMS Components

Economic Dispatch Models

Unit Commitment

SCADA Systems for monitoring and controlling grid assets, including renewable generation

Distribution Management Systems for managing the distribution grid, including integrating renewable distributed energy

Systems for **collecting and managing data from smart meters and sensors** for better grid management

Stability analysis tools to assess the of the grid under transient conditions