

KEEPING THE POWER ON

The Business Case for Emerging Energy Storage Technologies

July 14 8 am - 12 pm EDT

Welcome and Workshop Overview

Daniel Morris

Clean Energy Lead, Climate Investment Funds

Update on Global Energy Storage Program

Keeping the Power On: The Business Case for Emerging Energy Storage Technologies

July 14, 2021

Status of GESP since May 2021

Progress on the pipeline:

• Five approved projects worth USD 70.78 m in South Africa, Ukraine, Honduras, Haiti, and LAC Region

Expected Results

- 100 million MTCO2e lifetime emissions reduction
- 1.8 gigawatts installed storage capacity
- USD 1.6 billion in economic value
- \$3 billion in co-financing

Key Technology Questions from First Learning Platform Event

- What energy storage technologies are most relevant for developing countries?
- How do we make energy storage technology cheaper for developing countries?
- What are the costs of energy storage solutions and commercial viability?
- How can you evaluate the value of storage?

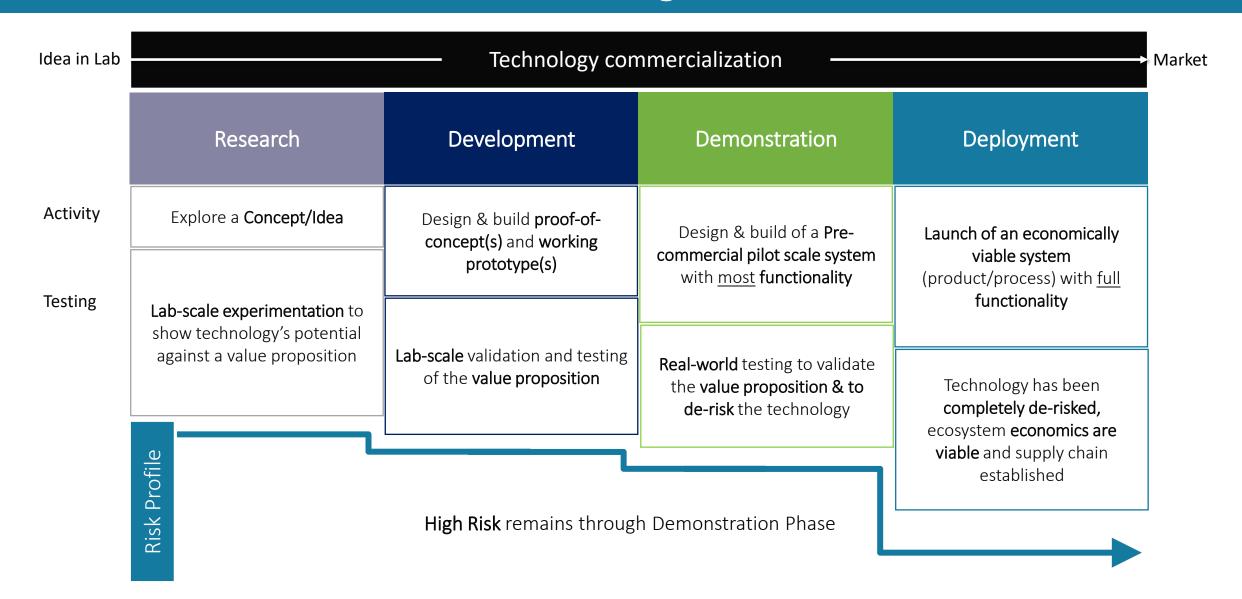
Stephen Hendrickson

Program Manager, Office of Technology Transitions, US Department of Energy

Technology Commercialization and the Energy Storage Grand Challenge

July 14, 2021

Office of Technology Transitions' Mission


Our statutory (Energy Act 2020) mission is "to expand the commercial impact of the research investments of the Department."

We "oversee delivery of the DOE strategic goals for technology commercialization and streamlining access to DOE's national labs to foster partnerships with the private sector to move solutions to market."

(We also have congressional mandate to report out on tech transfer activities across DOE.)

OTT stewards commercialization programs across the Department and labs.

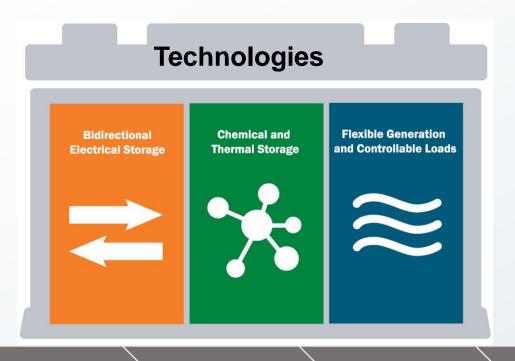
In the DOE context, that means moving across the RDD&D continuum

ESGC Overview

ESGC Roadmap

- **Mission:** To be a global leader in energy storage innovation, manufacturing, and utilization.
- Vision: Energy storage technologies increasingly contribute to a U.S. and global energy system that is resilient, flexible, affordable, and secure.
- Goal: To develop and domestically manufacture energy storage technologies that can meet all marketplace demands by 2030.

Decarbonization Goals


- Decarbonizing electricity
- Decarbonizing transportation across all modes
- Decarbonizing energy-intensive and high GHG-emitting industries
- Reducing the carbon footprint of buildings
- Enabling a net-zero agricultural sector

Achieving the ESGC mission is a key enabler of decarbonization goals

ESGC Coordination

Unifying efforts across technologies and functions

Offices

- Office of Electricity
- Energy Efficiency and Renewable Energy
- Office of Science
- Office of Technology Transitions

- Nuclear Energy
- Fossil Energy
- Office of Policy
- ARPA-E
- Loan Programs
 Office

Functions

Basic Science Research & Discovery

Application Driven
Materials
Development

Applied Device and System R&D

Cost & Performance Metrics, Targets

Demonstration and Performance Validation

Systems Analysis and Valuation

Manufacturing and Commercialization

Use Cases Quantify Diverse Storage Beneficiaries

The Use Cases form a technology neutral framework to ensure that storage technologies can cost effectively meet real needs.

Facilitating Grid Decarbonization

Ensure grid flexibility and the continued reliability, resilience, and security in a decarbonized electric power system.

\$0.03-\$0.05/kWh Levelized Cost of Storage

Critical Services

Maintain operations in facilities critical to public health/safety during major outage events

\$77/kW-year storage capex

\$1392/kW-year backup generator offset

Serving Remote Communities

Support communities not connected to the bulk power and may be subject to high energy costs, supply disruption, and disaster events.

\$65/MWh Delivered Energy Cost

Facility Flexibility, Efficiency, and Value Enhancement

Optimize energy production and/or usage to optimize value and enable flexible, efficient operations for the facility owner

\$52/kW-yr residential & commercial

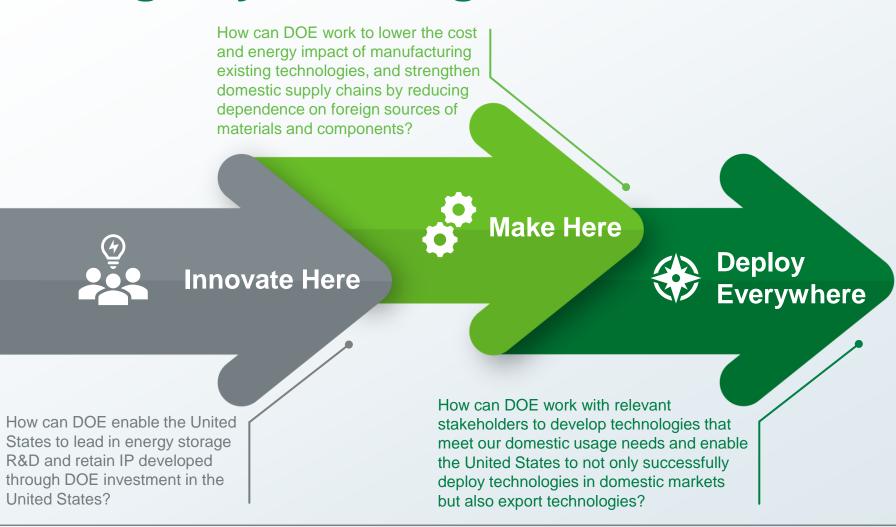
\$20-\$52/kW-yr large facilities.

Electrified Mobility

Support electrification of the transportation sector by minimizing charging impacts to the grid and promoting low-cost, high performance EVs.

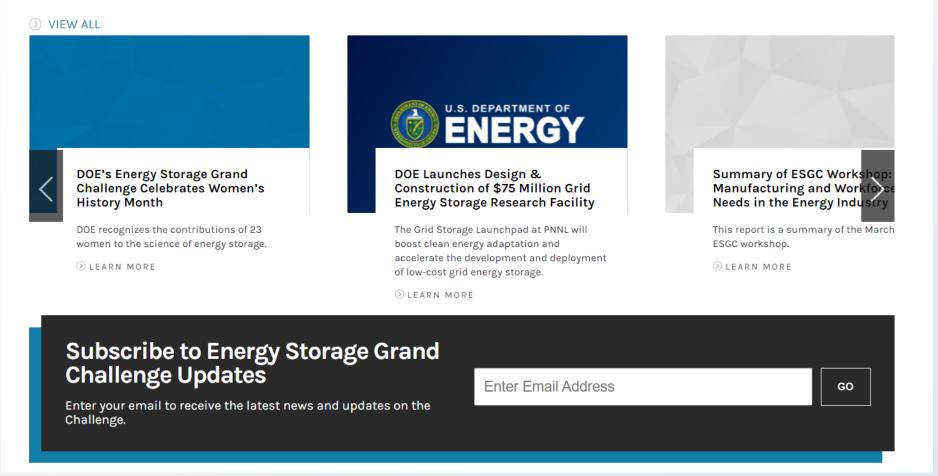
\$60/kWh manufactured battery cell cost

Future Use Cases


Independent Network Infrastructure

Infrastructure that is interdependent with the electric grid and requires reliable electricity delivery to maintain effective operations.

\$77/yr storage capex


Addressing Key Challenges

Connecting with the ESGC

https://www.energy.gov/energy-storage-grand-challenge/

Thank you

For further info:

stephen.hendrickson@hq.doe.gov