

Storage Futures Study : Technology Review

Nate Blair – PI Storage Futures Study Group Manager, Distributed Systems And Storage Integrated Applications Center

https://www.nrel.gov/analysis/storage-futures.html

The Four Phases of Storage Deployment

Phase	Primary Service	National Potential in Each Phase	Duration	Response Speed	
Deployment prior to 2010	Peaking capacity, energy time shifting and operating reserves	23 GW of pumped hydro storage	Mostly 8–12 hr	Varies	While Phase
1	Operating reserves	<30 GW	<1 hr	Milliseconds to seconds	roug
2	Peaking capacity	30–100 GW, strongly linked to PV deployment	2–6 hr	Minutes	there
3	Diurnal capacity and energy time shifting	100+ GW. Depends on both on Phase 2 and deployment of variable generation resources	4–12 hr	Minutes	consi overl unce
4	Multiday to seasonal capacity and energy time shifting	Zero to more than 250 GW	Days to months	Minutes	

While the Phases are roughly sequential there is considerable overlap and uncertainty!

Storage Futures Study collected data on a wide variety of storage technologies

		Lithium-lo
Storage Type/Technology	Primary Data Source	System
Thermal Storage		
Pumped thermal energy storage (PTES)	(McTigue et al. In Press)	Тга
Electrochemical Storage		
Lithium ion hottom (LID)	Multiple sources;	
Lithium-ion battery (LIB)	see References (p. 58)	
Lead-acid battery	Mongird et al. 2020	
Redox flow battery (flow batteries)	Mongird et al. 2020	Battery
Sodium sulfur battery	Mongird et al. 2019	
Sodium metal halide battery	Mongird et al. 2019	
Zinc-hybrid cathode battery	Mongird et al. 2019	Pumped- Storage
Ultracapacitors	Mongird et al. 2019	Plant
Hydrogen storage (using electrolyzers, salt	Hunter et al. 2021	
caverns, and stationary fuel cells)		
Electromechanical Storage		
Compressed air energy storage (CAES)	Mongird et al. 2020	
Liquid air energy storage (LAES)	Olympios et al. In Press	241
Pumped-storage hydropower (PSH)	Mongird et al. 2020	
Flywheel	Mongird et al. 2019	
Gravity	Schmidt 2018	Lower Re

Some technologies scale better with duration

- Total cost is combination of both axis
- Low cost per duration (\$/kwh) better for longduration
- Low \$/kW cost better for short-duration use cases
- Difficult to determine for emerging technologies

Capital cost for energy (\$/kWh) versus capital cost for capacity (\$/kW) for various technologies NREL | 4

Future Battery Costs by Cost Scenario - Moderate

Capital Cost vs. Duration for Storage Technologies

