Energy Storage

Beyond Batteries

Henrik Stiesdal, November 4, 2019

Key motivation for storage – renewable power integration

Production and load curves for Denmark illustrate the issue

• Even in a high-wind period such as the first two weeks of December 2015, there are periods with essentially no renewables production

Key motivation for storage – eliminating gas peaker plants

The California "Duck Curve"

- Large-scale PV build out without storage leads to costly evening ramping needs
- Within a few years CAISO expects ramp rates to reach 13,000 MW over three hours, above current thermal peaker capacity
- High-capacity storage systems with fast ramp rates offer a lowcarbon solution Source: CAISO

So – how much storage do we need?

Wind penetration as function of storage capacity

The key storage technologies

Comparison of technologies

Торіс	Li-ion	Pump H ₂ O	CAES	H ₂	NH ₃	Thermal
Technology readiness charge- discharge	Mature	Mature	Mature	Mature	Mature	Mature
Technology readiness storage unit	Mature	Mature	Mature	Mature	Mature	Developmen t stage
Round-trip efficiency	90%	85%	40-60%	30-40%	30-40%	35-60+%
Round-trip cost	High	Low	Low	Medium	Medium	Low
Energy density	High	Low	Low	High	High	High
Footprint	Small	Large	Small	Small	Small	Small
Scalability, power	100 MW	1000 MW	100 MW	1000 MW	1000 MW	1000 MW
Scalability, energy	100 MWH	100 GWh	1 GWh	100 GWh	500 GWh	500 GWh
Location requirement	None	Special topo	Special geology	Special geology	None	None
Raw material use	High	None	None	Moderate	Moderate	None

© Stiesdal A/S 2019, All Rights Reserved

The heat pump principle of the GridScale Battery

Charge

Discharge

The industrialized concept of the GridScale Battery

Design for industrialization and mass production is a key feature

- The turboexpander design uses ٠ standardized industrial components, combined into a high-efficiency unit
- Thermal energy is stored in ٠ insulated steel tanks filled with crushed basalt rock
- Internal insulation system facilitates • the use of conventional steel in reservoir tanks

Storage Laur

Turbine impeller

Turboexpander

© Stiesdal A/S 2019, All Rights Reserved

Storage costs depend on charging costs

Storage is the missing link in global integration of renewables

12,000

10.000

The bad news:

- Without energy storage it is not realistic or economically viable to aim for much above 40-50% share of renewables in the electric power system
- Li-ion battery storage systems are too expensive for large-scale renewable energy integration

The good news:

- Storage technologies exist that can fill the gap
 - Thermal storage for days to weeks
 - Hydrogen storage using amonia as carrier for seasonal storage

© Stiesdal A/S 2019, All implement!

overgeneration

rist

Hour

Thanks for your attention

Henrik Stiesdal hst@stiesdal.com